django-siuggable Documentation
Release dev

2012, Florent Messa and contributors

May 23, 2013

CONTENTS

1 Reference

3

1.1 Installation e e e e e e e e e 3

1.2 Usage o o o e e e e e e e e e e e e e 3

1.3 Indicesand tables e e e e 7

2 Issues 9

django-sluggable Documentation, Release dev

django-sluggable is a library to manage your slugs and redirect old slugs to a new one. With this library, you will have
the plain history of your operations.

You can report bugs and discuss features on the issues page.

CONTENTS 1

https://github.com/thoas/django-sluggable/issues

django-sluggable Documentation, Release dev

2 CONTENTS

CHAPTER
ONE

REFERENCE

For further details see the reference documentation:

1.1 Installation

Either check out django-sluggable from GitHub or to pull a release off PyPI

pip install django-sluggable

1.2 Usage

1.2.1 Integrated in an application

To use django-sluggable we will provide a basic application in this section.
Consider having the following models.py:

users/models.py

class User (models.Model) :
username = models.CharField (max_length=150)

Now you want urls like /users/<username> but also keeping your SEO when a specific user is changing his
username: we want a permanent redirection between the old username and the new one.
In models.py, we will define a decider model which will store all usernames:

users/models.py
from sluggable.models import Slug

class UserSlug(Slug):
class Meta:
abstract = False

In the case of our User class the slug is basically the username of the user, so we will change the type of the
usernamne field.

users/models.py
from sluggable.fields import SluggableField

http://github.com/thoas/django-sluggable
http://pypi.python.org/pypi/django-sluggable
https://github.com/thoas/django-sluggable

django-sluggable Documentation, Release dev

class User (models.Model) :
username = SluggableField(decider=UserSlug)

def _ unicode_ (self):
return self.username

Now you have your sluggable model, let’s play with the API, by adding our first member in the console:

In [1]: from users.models import User, UserSlug
In [2]: user = User.objects.create (username="thoas")

When you are creating a new User it will also create a linked model by using the contenttypes framework of Django:

In [3]: user_slug = UserSlug.objects.get (slug="thoas")
In [4]: user_slug.redirect
False

With this UserS1ug you can now track every username changes by your users.
Remember your first created user right? We will change its username:

In [5]: user.username = 'oleiade’
In [6]: user.save()

You new username is now your primary username and you will be able to provide a permanent redirection between
the old one and new one:

In [7]: user_slug = UserSlug.objects.get (slug="oleiade")
In [8]: user_slug.redirect

False

In [9]: old_slug = UserSlug.objects.get (slug="thoas")

In [10]: old_slug.redirect

True

If you are accessing an old slug, you can also retrieve the current one at any time:

In [11]: old_slug.current
<Slug thoas for oleiade>

If you do not have a S1ug instance, no problem you can use the default manager for that:

In [12]: Slug.objects.get_current (user)
<Slug oleiade for oleiade>

1.2.2 Work with class-based views

Now you know how to manipulate your users, we will add real world examples in an real application.
Let’s begin with the views . py file.

In this section, we will only use Class-based views so if you are not familiar with them, go check them they are
awesome:

users/views.py
from django.views import generic

from users.models import User

4 Chapter 1. Reference

https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/
https://docs.djangoproject.com/en/dev/topics/class-based-views/

django-sluggable Documentation, Release dev

class UserDetailView (generic.Detail):

model = UserSlug

context_object_name = ’slug’
slug_field = ’"username’
template_name = ’‘users/detail.html’

users/urls.py
from users import views

urlpatterns = patterns(’’,

url (r’ “users/ (?P<username>\w+) /$’,

views.UserDetailView.as_view(),

name='user_detail’),

So we have defined a pretty standard view to show an user with its username, so boring duh?

The interesting part is the redirection provided by django-sluggable, let’s rewrite UserDetailView.get:

users/views.py
from django.views import generic

from django.shorcuts import redirect

from users.models import User

class UserDetailView (generic.Detail) :

model = UserSlug

context_object_name = ’user’
slug_field = ’"username’
template_name = ‘users/detail.html’

def get(self, request, =args,
obj = self.get_object ()

*xkwargs) :

The slug retrieved is a redirection to a new one

if obj.redirect:

Retrieve the current slug used

current = obj.current

return redirect ('user_detail’,

username=current.sluqg)

Retrieve the real object affected to the slug
self.object = obj.content_object

context = self.get_context_data (object=self.object)

return self.render_to_response (context)

Wait? UserDetailView.get is big.

Let’s rewrite it with django-multiurl to dispatch our slug management between multiple views.

With this new method, we don’t have to rewrite UserDetailView.get anymore:

users/views.py

1.2. Usage

https://github.com/thoas/django-sluggable
https://github.com/jacobian/django-multiurl

django-sluggable Documentation, Release dev

from django.views import generic
from users.models import User, UserSlug

class UserDetailView (generic.Detail) :
model = User

context_object_name = ’slug’
slug_field = ’"username’
template_name = ’‘users/detail.html’

class UserRedirectView (generic.RedirectView):
permanent = True

def get_redirect_url(self, username):
slug = get_object_or_404 (UserSlug.objects.filter (redirect=True), slug=username)

return reverse ('user_detail’, args=(slug.current.slug,))

But we have to rewrite our urls . py file to use django-multiurl:

users/urls.py

from multiurl import multiurl, ContinueResolving
from django.http import Http404

from users import views

urlpatterns = patterns(’’,
multiurl (

url (r’ “users/ (?P<username>\w+) /$’,
views.UserDetailView.as_view(),
name='user_detail’),

url (r’ “users/ (?P<username>\w+) /$’,
views.UserRedirectView.as_view (),
name='user_redirect’),

catch = (Http404, ContinueResolving)

1.2.3 Hidden features

How know if the slug has changed?:

In [1]: user = User.objects.create (username="thoas")
In [2]: user.slug_changed

False

In [3]: user.slug = ’"oleiade’

In [4]: user.slug_changed

True

How to know if a slug is available or not?:

In [1]: user = User.objects.create (username="thoas")
In [2]: UserSlug.objects.is_slug_available (’thoas’)
False

In [3]: user.slug = 'oleiade’

6 Chapter 1. Reference

https://github.com/jacobian/django-multiurl

django-sluggable Documentation, Release dev

In [4]: user.save ()
In [5]: UserSlug.objects.is_slug_available(’thoas’)
False

If you are providing an optional ob j parameter which has the slug:

In [6]: UserSlug.objects.is_slug_available(’thoas’, obj=user)
True

Restore previous slug and remove redirections:

In [7]: UserSlug.objects.update_slug(user, ’'thoas’, erase_redirects=True)

1.3 Architecture

1.4 Indices and tables

* genindex
* modindex

e search

1.3. Architecture 7

django-sluggable Documentation, Release dev

8 Chapter 1. Reference

CHAPTER
TWO

ISSUES

For any bug reports and feature requests, please use the Github issue tracker.

https://github.com/thoas/django-sluggable/issues

	Reference
	Installation
	Usage
	Indices and tables

	Issues

